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Chapter 8 

INDUCTION MOTORS FOR DRIVES 

The induction motor is considered to be the workhorse of industry. It is 
an AC motor, either three-phase or (for low powers) single phase. Industrial 
(conventional) induction motors are supplied from constant voltage and 
frequency industrial power grids for rather constant speed operation. For 
variable speed drives induction motors are fed from PECs at variable voltage 
amplitude and frequency. 

Like the DC motor, an induction motor consists of a stator (the fixed 
part) and a rotor (the moving part) mounted on mechanical bearings and 
separated from the stator by an airgap. 

8.1. THE STATOR AND ITS TRAVELING FIELD 

The stator consists essentially of a magnetic core made up of punchings 
(laminations) — 0.1 mm to 0.5mm thick — carrying slot-embedded coils. 
These coils are interconnected in a certain fashion to constitute the so-called 
AC armature (primary) winding (Figure 8.1). 

 
Figure 8.1. Cross section of an induction motor with two poles 

The three-phase windings may be placed in slots in a single layer (Figure 
8.1) or in two layers. All the coils are, in general, identical and the span is 
close or equal to what is called the pole pitch  or the half-period of m.m.f. of 
that coil or phase. The number of poles per periphery is denoted as 2p.  

Under each pole there are three zones, one for each phase. Each phase 
zone per pole contains q slots (q = 2–8, integer in general). The consecutive 
phase zones of the same polarity, a+a+, b+b+ in Figure 8.1. are spatially shifted 
by a geometrical angle of 2/3p which corresponds to 2/3 of pole pitch of the 
winding. 
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As one pole pitch corresponds to a semiperiod (180° electrical degrees), 
the electrical angle e is related to the mechanical angle g by 

 ge p   (8.1) 

The m.m.f. of each phase coil has a stepwise waveform (Figure 8.2) 
which is assimilated by a sinusoidal distribution with the semiperiod  (pole 
pitch). There are also harmonics which, in general, produce parasitic torques 
augmented by the rotor and stator slot openings. 

 

Figure 8.2. The m.m.f. and airgap flux density of phase a. 

The phase current is sinusoidal and thus the phase m.m.f. fundamental 
Fa1(x, t) may be written as: 

 
  tsinxsinFt,xF 1m1a1a 


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
 (8.2) 

   tsin2Iti 1a   (8.3) 

As the other two phases b, c are space shifted by an electrical angle of 
2/3 and their currents ib, ic (in time) by 2/3, the m.m.f. of phase b and c are 
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The resultant stator m.m.f. fundamental Fs1(x,t) is the sum of Fa1, Fb1 and 
Fc1 
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This is evidently a wave traveling along the rotor periphery with the 
linear speed Us obtained from 
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 (8.7) 
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Its increment should be zero 

 
0dtdx 1 




  
Finally 
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 (8.8) 

where f1 - the primary frequency. 
As the airgap is uniform, neglecting the slot openings, the airgap flux 

density (for zero rotor currents) Bg1(x,t) is 
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 (8.9) 

where ge is an equivalent airgap accounting globally for the slot openings and 
stator and rotor core magnetic saturation. 

Consequently, the three-phase stator winding produces — for zero rotor 
current — a traveling field in the airgap, with the linear speed Us = 2f1. As 
the peripheral speed is related to the angular speed n1 and the stator bore Di 
by 

 11is np2nDU   (8.10) 

the angular speed of the traveling field n1 is 

 p/fn 11   (8.11) 

n1 is also called the synchronous speed since for this speed of the rotor 
no voltages are induced in the rotor windings. 

8.2. THE CAGE AND WOUND ROTORS ARE EQUIVALENT 

The rotor consists of a laminated core with uniform slotting 
accommodating either aluminum (copper) bars short-circuited by end-rings 
(the squirrel cage), Figure 8.3.a., or a three-phase winding (as in the stator) 
connected to some copper rings and fixed brushes, the wound rotor (Figure 
8.3.b). 

It has been demonstrated that a symmetric cage (with round bars) may be 
modeled by an equivalent three-phase winding, that is, a wound rotor. 

A PEC or variable resistor may be connected to the wound rotor brushes. 

8.3. SLOT SHAPING DEPENDS ON APPLICATION AND 
POWER LEVEL 

Stator slots are either semiclosed (Figure 8.4a) for low and medium 
power (hundreds of kW) or open (Figure 8.4b) above hundreds of kW when 
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preformed coils are introduced in slots. Rotor slots for wound rotors are in 
general semiclosed if the stator ones are open to allow for a rather small 
airgap (below 2mm) even for high powers (MW and above). Cage rotor slot 
shapes depend on the power speed level and starting torque requirements in 
constant frequency fed (industrial) applications. 

 

 

Figure 8.3. Induction motor rotors: a.) cage-type rotor; b.) wound rotor 

 

Figure 8.4. Stator or wound rotor slots 

a.) for low power (semiclosed slots), b.) for high power (open slots) 

Round semiclosed slots (Figure 8.5a.) do not exhibit notable skin effect 
at start and may be used for constant frequency fed low power low starting 
torque motors or for variable speed when skin effect is to be avoided. 

Skin effect is the concentration of current in the rotor bar towards the 
upper part of the rotor bar at high rotor frequency (beginning with constant 
frequency f1, at standstill when the rotor frequency f2 = f1). The consequence 
is an apparent increase in rotor resistance and a less important slot leakage 
inductance reduction. 

Double cages are used in the medium power range to reduce the starting 
current and increase the starting torque (Figure 8.5e, f). Skin effect (deep 
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bar) or double cages imply higher rotor resistance and losses at rated speed 
and thus are to be avoided in variable speed drives. In variable speed 
(frequency) drives, slots as in Figure 8.5g are proposed to reduce the rotor 
surface losses. 

 

Figure 8.5. Rotor slots: 

a.) semiclosed - round for low power and variable frequency motors, 

b.) closed - for low noise or high speed motors, 

c.) semiclosed with moderate skin effect and starting torque - constant frequency, 

d.) semiclosed with high skin effect for high starting torque - constant frequency, 

e,f.) double cage - for superhigh starting torque - constant frequency, 

g.) for high speed inverter-fed motors. 

We entered this discussion as many existing motors are now provided 
with PECs and thus care must be exercised about performance. Moreover, for 
constant frequency (speed) operation, the efficient motor category has been 
introduced — though at lower starting torque and higher starting current. 
These efficient motors have a short pay-back period due to power loss 
reduction and are also more adequate in PEC fed variable speed drives. 

8.4. THE INDUCTANCE MATRIX 

An electric machine is a system of electric and magnetic circuits that are 
coupled magnetically and electrically. It may be viewed as an assembly of 
resistances, self-inductances and mutual inductances. We now briefly discuss 
these inductances. 

As a symmetrical rotor cage is equivalent to a three-phase winding we 
will consider the wound rotor induction motor case (Figure 8.6). 
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Figure 8.6. Three-phase induction motor with equivalent wound rotor 

There are six circuits (phases) and each has a self-inductance and mutual 
inductances. Let us notice that the self-inductance of phases a, b, c, ar, br, cr 
do not depend on rotor position (slot openings are neglected). They have a 
main part Lms, Lmr which corresponds to the flux paths that cross the airgap 
and embrace all windings on the stator and rotor, and leakage parts Lls and Llr 
which correspond to the flux paths in the slots, coil end connections, mostly 
in air, which do not embrace rotor and stator windings. 

Let us notice that the airgap flux density of each phase m.m.f is basically 
sinusoidal along the rotor periphery, and any coupling inductance between 
phases varies cosinusoidally with the electrical angle of the two windings. 
Also, mutual inductances on the stator Lab, Lbc, Lac and, respectively, on the 

rotor La br r
,  La cr r

,  L b cr r
,  though referring mainly to flux paths through the 

airgap, do not depend on rotor position 
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Finally, the stator-rotor coupling inductance Lsr depends on rotor 
position through coser as the airgap flux density in the airgap produced by 
any stator phase is sinusoidal 
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Wre, Wse are the equivalent turns ratio in the rotor and stator phases 
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as self-inductances depend on the number of turns squared. 



 
 
 
 
 
 

ELECTRIC DRIVES                                                                      179 

Consequently, Lsr(er) is 

   ersrmersr cosLL   (8.16) 

 
r
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The inductances may be now assembled into the so-called matrix 
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where  
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8.5. REDUCING THE ROTOR TO STATOR 

It is useful to replace the actual rotor winding by an equivalent one with 
the same performance (and losses) but having the same number of turns per 
phase as in the stator. 

Evidently, for this case, the maximum mutual inductance becomes equal 
to Lms = Lmr 

 mssrm LL   (8.19) 

Denoting the currents and voltages in the rotor with ir
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cr and the ones reduced to the stator as iar, ibr, icr, Var, Vbr, Vcr  
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To conserve the rotor input power 
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For equal winding losses and leakage magnetic energy 
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So the new inductance matrix   erc,b,a,c,b,a rrr
L   is similar to that in 

(8.18), but with mssrmmsmr
r LL ,LL  . 

Note: For a cage-rotor the expression of the rotor to stator reduction 
factor Krs of (8.15) is more complicated but, as we do not have access to the 
cage current, dealing directly with the reduced parameters is common 
practice. For cage motors, Krs is thus required only for motor design 
purposes. 

We may now pursue the mathematical model in phase coordinates 
(variables). 

8.6. THE PHASE COORDINATE MODEL GOES TO 8th ORDER 

In matrix form, with rotor reduced to the stator, the voltage current 
equations — in stator coordinates for the stator and in rotor coordinates for 
the rotor — are 
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    rrrsss r,r,r,r,r,rDiagr   (8.25) 

    Tcrbrarcba V,V,V,V,V,VV   (8.26) 

    Tcrbrarcba i,i,i,i,i,ii   (8.27) 

Using (8.24) in (8.23) — with er variable in time in any case — we 
obtain 
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where 
rr

er p
dt

d
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  (8.29) 

r is the mechanical angular speed (r = 2n). 
In the absence of magnetic saturation multiplying (8.28) by [i]T, yields 
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The first right term represents the winding losses, the second, the stored 
energy variation, and the third, the electromagnetic power Pe 
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Finally, the electromagnetic torque Te is 
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The motion equations are 
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An 8th order nonlinear model with time variable coefficients 
(inductances) has been obtained, while still neglecting the core losses. Only 
numerical methods provide a solution to it. This complex model is to be used 
directly only in special cases, when the computation effort is justified. Not so 
for electric drives, in general.  

Complex (space-phasor) variables are introduced to obtain a model with 
position (time) independent coefficients. 

8.7. THE SPACE-PHASOR MODEL 

Let us introduce first the following notations [1-4] 
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Using (8.34) in the flux expression (8.24), the phase a and ar flux 
linkages a and ar write 
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We now introduce the following complex variables as space-phasors 
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where 
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In symmetric transient and steady-state regimes and symmetric windings 
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With definitions (8.37)-(8.38), Equations (8.35)-(8.36) become 
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If to (8.42)-(8.43) we add similar equations for phases b, br and c, cr, 
(8.23) becomes 
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with mlrrmlss LLL   ;LLL    (8.46) 
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 (8.47)  

The complex variables , , ,i ,i ,V ,V r
r

s
s

r
r

s
s

r
r

s
s   are still represented in 

their respective coordinates (stator for stator, rotor for rotor). We may now 
use a rotation of the complex variables by the angle b in the stator and by 
b–er in the rotor to obtain a unique coordinate system at some speed b 
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With the new variables, (8.44)-(8.45) become 
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with 

 rmsss iLiL   (8.52) 

 smrrr iLiL   (8.53) 

Notice that for clarity we dropped the superscript b. 
The torque should be calculated from (8.32) with the above notations 
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Equations (8.51)-(8.54) together with the equations of motion (8.33) 
constitute the complex variable or space-phasor model of the induction 
machine with single rotor cage and with core loss neglected. 

We may now decompose in plane the space-phasors along two 
orthogonal axes d and q moving at speed b [5] 
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 (8.55) 

With (8.55) the two voltage equations (8.51) become 
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Also from (8.49)-(8.50) and (8.47) 
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[P(b)] is the Park transformation 
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 (8.58) 

The inverse of Park transformation is 

      Tb
1

b PP  
 (8.59) 

A similar transformation is valid for rotor quantities with b–er 
replacing b in (8.58).  

It may be proved that the homopolar components V0, i0, V0r, i0r have 
separate equations and do not interfere in the energy conversion process in 
the motor. 
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 (8.60) 

Equations (8.56)-(8.60) represent the dq0 model of the induction 
machine that operates with real (not complex) variables. The complex 
variable (space-phasor) and d-q model are equivalent as they are based on 
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identical assumptions (symmetric sinusoidally distributed windings and 
constant airgap). The speed of the reference system b is arbitrary as the 
airgap is uniform. 

Up to now we rushed through equations to quickly obtain the complex 
variable (d-q) model of the induction machine; we now insist on some 
graphical representations to facilitate the assimilation of this new knowledge. 

 
Example 8.1. The space-phasor of sinusoidal symmetric currents 
Consider three symmetrical sinusoidal currents and show how their 

complex space-phasor is
s
 varies in time through 6 instants. Give a graphical 

description of this process in time. 
Solution: 
The three-phase currents may be written as 
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 (8.61) 

The space-phasor in stator coordinates is
s

 is (8.37) 
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with  3
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 (8.63) 

(8.62) becomes   qd11
s

s ijitsinjtcos2Ii   (8.64) 
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 is shown 
in Figure 8.7. 

 

Figure 8.7. The space-phasor of sinusoidal three-phase currents 
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It should be noticed that the time “produces” the instantaneous values of 
currents while the definition of the space-phasor shows that each phase 
current instantaneous value is placed along the axis of the corresponding 
phase. So, in fact, the space-phasor travels in the d-q stator plane with the 
electrical angular speed equal to 1. 

The same concept is applied to flux linkages and thus their space-phasor 
is related to the traveling field in AC machines. 

Also note that 

   0iii if   ;iiRe cbaa
s

s   (8.65) 

8.8. THE SPACE-PHASOR DIAGRAM FOR ELECTRICAL 
TRANSIENTS 

The space-phasor model equations (8.51)-(8.53) may be represented on a 
space-phasor diagram in the d-q plane, with axes d and q rotating at speed b 

= 1 (Figure 8.8). Let us consider Vr
b  0.  

 

Figure 8.8. The space-phasor diagram of induction motor valid for transients (for 

steady d/dt = 0) in synchronous coordinates (cage rotor: Vr
b  0 ). 

As 1 is the frequency of the actual stator voltages at steady-state, for 
this latter case d/dt = 0. In general, during steady-state  

 d/dt = j(1–b). (8.66) 
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Also for steady-state the rotor flux equation (8.52) becomes 
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 (8.67) 

Only for 0V b
r   (short-circuited, cage, rotor) the rotor current and flux 

space-phasors are orthogonal to each other. 
For this case the torque expression (8.54) becomes 
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 (8.68) 

8.9. ELECTRICAL TRANSIENTS WITH FLUX LINKAGES AS 
VARIABLES 

Equations (8.52)-(8.53) at constant speed allow for the elimination of 

rotor and stator currents is
b

 and ir
b

. 
With 
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 (8.71) 

(8.50)-(8.51) become 
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While s, r are the stator and rotor time constants, s′ and r′ are transient 
time constants of the stator and rotor. 

The structural diagram corresponding to (8.72)-(8.73) is shown on 
Figure 8.9. 

 

Figure 8.9. Structural diagram of induction motor with stator and rotor flux  s
b
 and 

 r
b  as variables; random speed (b) coordinates. 

8.10. COMPLEX EIGENVALUES FOR ELECTRICAL TRANSIENTS 

Equations (8.72)-(8.73) imply a second-order complex variable system 
with only two complex eigenvalues corresponding to the determinant 
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 (8.75) 

The complex eigenvalues s1 2,  from (8.75) depend on the reference 
system speed b and on rotor speed r, but their real part is, in general, 
negative suggesting attenuated periodic response [4,6]. 

Example 8.2. For an induction motor with the data rs = 0.5, rr = 0.60, 
Ls = Lr = 0.08H, Lm = 0.075H, p = 2 pole pairs, calculate the complex 
eigenvalues for constant speed, in synchronous coordinates (1 = 260) for n 
= 0 and n = 1800 rpm. 

Solution: 
The value of b = 1 = 260 rad/s. , s’, r’, Ks, Kr are now calculated 

from (8.71)-(8.74) 
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Also n4pn2r   (8.81) 

Now we rewrite (8.75) in a canonical form 
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 (8.82) 

It is evident that the roots s depend on speed n. The solving of the second 
order equation is straightforward. 

8.11 ELECTRICAL TRANSIENTS FOR CONSTANT ROTOR FLUX 

By constant rotor flux we mean, in general, constant amplitude at (1–
b) frequency. For synchronous coordinates it would mean zero frequency. 

So constant rotor flux means that in (8.72)-(8.73) 
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Using (8.83) in (8.73) 
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It is more convenient to use synchronous coordinates for equations 
(8.72): 
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Equations (8.84)-(8.85) lead to a simplification in the structural diagram 
of figure 8.9 as the derivative term in the rotor disappears (Figure 8.10). 

 

Figure 8.10. Structural diagram of induction motor with constant rotor flux and speed 
in synchronous coordinates (b = 1) 

The system’s order is reduced and thus the stator flux presents only one 
complex eigenvalue as may be inferred from (8.84)-(8.85). 

8.12. STEADY-STATE: IT IS DC IN SYNCHRONOUS 
COORDINATES 

Steady-state means, in general, that the three-phase voltages are 
symmetric and sinusoidal: 
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The voltage space-phasor in random coordinates is 
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with (8.86) 
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For steady-state 
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It is obvious that, for steady-state, the currents in the model must have 
the voltage frequency, which is:  b1 ωω  . Once again for steady-state we 

use (8.51), with d/dt =  b1 ωωj   as inferred in (8.66). 

Consequently from (8.51) 
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 (8.91) 

S is known as slip. 
So the form of steady-state equations is independent of the reference 

speed b. What counts is the primary (stator) frequency 1 and the actual 
rotor currents frequency S1. 

Notice that, for synchronous coordinates, steady-state means d/dt = j(1–
b) = 0, that is DC quantities. 

In the flux equations (8.52)-(8.53) we may separate the main (airgap) 

flux linkage m  
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 m
b

rlr
b

r iL   (8.93) 

Equations (8.91)-(8.93) lead to the standard equivalent circuit of Figure 
8.11. 

Magnetic saturation may be considered through  m mi  functions 
approximating measurements or field distribution calculations. [7] 

 
Figure 8.11. Space-phasor steady-state equivalent circuit of induction machine 

Note (on core loss): The core loss occurs mainly in the stator as 1 >> 
S1; that is, the frequency of magnetic fields is higher in the stator since the 
rated slip is Sn = 0.08-0.005 (decreasing with power). An equivalent 
resistance rm — determined from experiments — may be included in the 
equivalent circuit, Figure 8.11, to account for the core losses during steady-
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state. For investigating the role of core loss during transients, additional 
stator windings in the d-q model have to be included (see [7]). 

The torque expression (8.54) and Vr0
b = 0, yields 
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From (8.91) 
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Consequently the electromagnetic torque Te is 
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Using the equivalent circuit of Figure (8.11) and (8.95) we may obtain 
the conventional torque expression 
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 (8.98) 

8.13. NO-LOAD IDEAL SPEED MAY GO UNDER  
OR OVER CONVENTIONAL VALUE 1 

The no-load ideal speed (slip S0) corresponds to zero torque, that is, 
(8.91), zero rotor current 
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0r SjV   (8.99) 

Only for short-circuited rotor windings (or passive impedance at rotor 

terminals) ( Vr
b  0 ), the ideal no-load slip S0 = 0 and ro = 1. 

When the induction machine is doubly fed ( Vr
b  0 ), the ideal no-load 

slip is different from zero and the no-load ideal speed is, in general 

  010r S1  (8.100) 

The value and phase shift between Vr
b

0  and  r
b

0  could be arranged 
through a PEC supplying the wound rotor. So S0 could be either positive or 

negative. Thus only for Vr
b  0  from (8.96) the torque is positive 

(motoring), for S>0 and negative (generating) for S<0. 
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The doubly fed induction motor could operate either as a motor or as a 
generator below and above r0 = 1 (S0 = 0), provided that the PEC can 
produce bidirectional power flow between the wound rotor and the power 
grid. These doubly fed induction motor drives will be dealt with separately in 
Chapter 14 dedicated to high power industrial drives. 

 
Example 8.3. For steady-state, calculate the stator voltage, stator flux, 

current, power factor, torque of an induction motor at 10% ideal no-load 
(synchronous) speed 1 and S = 0.02. 

The motor data are rs = 0.5, rr = 0.6, Ls = Lr = 0.08H, Lm = 0.075H, 
r0 = 0.8Wb, 1 = 260 rad/s, p = 2 pole pairs, Vr

b = 0 (cage rotor). 
Solution: 
First we have to calculate the initial conditions, which are implicitly 

steady-state. Let us use synchronous coordinates 
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The torque (Te) is (8.96) 
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From (8.73) with d/dt = 0 and Vr
b = 0, we may now calculate the stator 

flux  s
b
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 (8.104) 

Note that the motor parameters are as in example 8.2 and thus r′ = 
0.01614s, s′ = 0.01937s, Ks = Kr = 0.9375,  = 0.1211. 
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Let us consider the d axis along the rotor flux and thus  r
b
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Now from (8.72) with 
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The motor phase voltage (r.m.s. value) 

 91.23241.1/4.3282/VV b
s  V (8.107) 

The stator current is obtained from (8.69) 
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The rotor space-phasor i r
b

 is (8.95) 
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The amplitude of the stator current 181.15i b
s  A. The results are 

illustrated by the space-phasor diagram in Figure 8.12. 
The power factor angle 1 is 

 




 
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b
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 (8. 110) 

Finally, cos1 = 0.633. 

 

Figure 8.12. Steady-state space-phasor diagram in synchronous coordinates (b = 1): 
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DC quantities 

Example 8.4. Loss breakdown 
A high efficiency induction motor with cage rotor has the data rated 

power Pn = 5kW, rated line voltage (rms) VL = 220V (star connection), rated 
frequency f1 = 60Hz, number of pole pairs p = 2, core loss (Piron) = 
mechanical loss Pmec = 1.5% of Pn, additional losses padd = 1%Pn, stator per 
rotor winding losses pcor/pcos = 2/3, rated efficiency n = 0.9 and power factor 
cosn = 0.88. 

Calculate all loss components, phase current (rms), then rated slip, speed, 
electromagnetic torque, shaft torque and stator current (as space-phasors). 

Solution: 
The loss breakdown diagram of the induction motor is shown in Figure 

8.13. 
The input power Pin is 

 
55.5555

9.0

5000P
P

n

out
in 




W (8.111) 

The phase current In (rms) is 

 
58.16

88.02203

55.5555

cosV3

P
I

nL

in
n 







A (8.112) 

 

 
Figure 8.13. Induction motor energy conversion 

The total losses p  are 

 55.555500055.5555PPp outin  W (8.113) 

Consequently 

 W755000015.0pp meciron   (8.114) 
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 W500001.0padd   (8.115) 

So  

 W35550757555.555pppppp addmecironcorcos    (8.116) 

 
W355p

3

2
p coscos 

 (8.117) 

  W142p   W;3.213p corcos   (8.118) 

The electromagnetic power Pe is the active power that crosses the airgap 

 p
TpPPP 1

eironcosine




 (8.119) 

 52677521355.5555Pe  W (8.120) 
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
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Nm (8.121) 

The rotor winding loss pcor is 

 encor PSp   (8.122) 

and thus the rated slip is 

 
02696.0

5267

142
Sn 

 (8.123) 

The rated speed nn is 

    rpm472.1751rps1912.2902696.01
2

60
S1

p

f
n n

1
n 

 
 (8.124) 

The shaft torque Tn is calculated directly from mechanical power Pn 

 
e

n

n
n TNm274.27

1912.292

5000
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P
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





 (8.125) 

Finally the amplitude of the stator current, is  in synchronous coordinates 
(DC quantities) is 

 3778.2341.158.162ii ns  A (8.126) 

Note: To calculate all motor parameters, resistances and inductances, 
more data are required. This is beyond our scope in this example, however. 
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8.14. MOTORING, GENERATING, AC BRAKING 

The equivalent circuit for steady-state (Figure 8.11) shows that the active 
power in the rotor (the electromagnetic power Pe), is 

 

1

r1
e

r2
r0e ω

ω
1S   ;

p

ω
T

S

r
I3P   (8.127) 

This expression is valid for the cage rotor (Vr
b = 0). 

Motoring mode is defined as the situation when the torque has the same 
sign as the speed 

 1S00    ;0T ,0P ree   (8.128) 

For generating the torque is negative (S<0) in (8.127) but the speed is 
positive 

 0S0    ;0T ,0P ree   (8.129) 

The generator produces braking (Te < 0, r > 0) but the energy transfer 
direction in the motor is reversed. The energy is pumped back into the power 
source through the stator. 

Braking is obtained when again (Te > 0, r < 0) (or Te < 0, r > 0) but the 
electromagnetic power is still positive 

 1S0 ;0T ;0P

1S0 ;0T ;0P

ree

ree




 (8.130) 

We may synthesize the results on operation modes as in Table 8.1. 

Table 8.1. Operation modes (cage rotor) 
S -   -   -   -   -   -   -   0   +   +   +   +   +   1   +   +   +   +   +   +   + 

r +   +   +   +   +   + 1 +   +   +   +   +   0   -   -   -   -   -   -   -   -  - 

Te 0  -   -   -   -   -  -  -  0   +   +   +   +   +   Te (start)   +   +   +   +    0 

Pe -  -   -   -   -   -  -   -  0   +   +   +   +   +   +   +   +   +   +   +   +   + 

mode Generating Motoring AC braking 

 
Using the torque expression (8.97) we may find the maximum torque for 

the critical slip: 
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 (8.131) 
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The torque slip (speed) curve is shown in Figure 8.14. 

 
Figure 8.14. Torque/speed curve of induction motors for constant voltage and 

frequency 

Using the definition of critical slip Sk and torque Tek in the torque 
expression (8.97) we obtain, after some approximations, the Kloss formula 
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S
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T

T
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ek

e


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 (8.133) 

8.15. DC BRAKING: ZERO BRAKING TORQUE AT ZERO SPEED 

For moderate braking requirements DC braking is commonly used in 
modern electrical drives. To calculate the DC braking torque we redraw the 
space-phasor equivalent circuit in Figure 8.11 but with a DC stator current 
source space-phasor in Figure 8.15. 

 
Figure 8.15. Equivalent circuit for DC braking - stator coordinates - in space-phasors; 

steady-state. 

The electromagnetic torque is still computed from (8.94) 
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with 
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Finally 
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The peak torque is obtained for rk 

 

rr

r
rk τ

1

L

r
ω   (8.137) 

and its value is 
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The braking torque may be modified through the DC current level in the 
stator. The PEC can produce the phase connection in Figure 8.15b where the 
current complex variable in stator coordinates is 
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 (8.139) 

The torque speed curve for DC braking is shown in Figure 8.16. Notice 
also that the rotor kinetic energy is dumped into the rotor resistor and that for 
zero speed the braking torque is zero. Also, above rk (which is fairly small 
in high efficiency motors), the torque is again rather small. 

 
Figure 8.16. DC braking torque of induction motors 

1/r
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8.16. SPEED CONTROL METHODS 

Variable speed is required in many applications. It has to be performed at 
high energy conversion rates. 

The no-load ideal speed r0 is ((8.100) with (8.99)) 
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 (8.140) 

Evidently for the cage rotor Vr
b
 = 0 and thus   r f0 1 12   or 

 p

f

p2
n 10r

0 




 (8.141) 

2 is the frequency of the rotor current (or of Vr0  through rotor side 
PEC). There are three essential methods to vary speed by changing the no-
load ideal speed (as the rated slip is small) as suggested by (8.140): 

 stator frequency f1 variation; 

 pole number (2p) changing; 

 wound rotor supply (or rotor frequency f2 variation). 
While pole number 2p changing involves either a separate stator winding 

or a special winding with a switch to change from 2p1 to 2p2 poles 
(Dahlander winding) the other two methods require variable frequency either 
in the stator or in the rotor, obtainable with PECs in the stator and, 
respectively, in the rotor. 

For limited speed variation, the power rating of rotor-side PEC is smaller 
than that of the PEC in the stator. In high power applications the rotor PEC 
solution with a wound rotor induction motor is the one preferred for limited 
speed range (30%) control. 

Stator frequency control is far more frequently used, especially for wide 
speed control range. However, the level of flux depends on the current in the 
machine, especially on the magnetization current 

 
b

r
b

sm III   (8.142) 

Consequently, it is crucial to control Im properly to avoid excessive 
magnetic saturation, while varying frequency f1. 

So we have to adopt either voltage Vs and frequency f1 coordinated 

control or current Is  (or Im ) and frequency f1 control. In general V1/f1 
coordinated change is applied. There is an infinity of possibilities to relate 

Vs (V1) or Is ( Im ) to frequency f1 to obtain the desired performance. 
However, only three main methods reached the markets: 

 V1/f1 - scalar control; 

 constant (controlled) rotor flux (r) vector control; 
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 constant (controlled) stator flux (s) - vector control. 
Here only the torque/speed curves obtainable with the above methods are 

given. Notice that in all these cases the PEC voltage supplying the induction 
motor is voltage limited with the maximum voltage reached at base speed b. 

8.17. V1 / f1 TORQUE/SPEED CURVES 

V1/f1 control means that: 

 1f01 fKVV   (8.143) 

We may judge the torque/speed curves obtained in this case through the 
critical slip Sk and torque Tek of (8.131)-(8.132). The critical slip increases 
notably with f1 (1) reduction while the critical torque is only slightly 
decreased with f1 decrease at frequencies above 5Hz. Below this value the 
peak torque decreases dramatically if (8.143) is applied (Figure 8.17). For a 

safe start V V K f  0 1  is applied to compensate for the stator resistance 
drop rsis 

 sns00 ircV   (8.144) 

V0 is called the voltage boost and amounts to a few percent of rated 
voltage Vn , higher for low power motors. 

Above rated (base) speed the voltage remains constant and invariably the 
critical torque decreases and, eventually, constant power is preserved up to a 
maximum frequency f1max. Above base speed, if we neglect the voltage drop 

r is s  in (8.91), the stator equation (for steady-state) is 

  >       ;jV b1
b

0s10s   (8.145) 

So, for constant voltage Vs0, the stator flux s0 and, consequently, the 
main flux m decrease with speed (frequency) increasing above b. This zone 
— b to 1max — is called the flux weakening zone. In many applications 
constant power is required for a ratio 1max /b of 2-4. The entire motor 
design (sizing) depends on this requirement in terms of both electromagnetic 
and thermal loading. 
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Figure 8.17. Torque/speed curves for V V K ff1 0 1    (V1/f1 control): 

a.) V1/f1 dependences, b.) Te/r curves; 

V1/f1 drives are standard with low dynamics applications and moderate 
speed control range (1b/1min = 10 - 15 or so) such as pumps or fans where 
the load torque is solely dependent on speed and thus an optimal V1/f1 
relationship may be calculated off line — for maximum efficiency or power 
factor — and implemented in the drive hardware. 

8.18. ONLY FOR CONSTANT ROTOR FLUX TORQUE/SPEED 
CURVES ARE LINEAR 

The torque expression for constant rotor flux r
b is (8.96) 
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 (8.146) 

and it represents a straight line (Figure 8.18). This is ideal for speed (or 
torque) control purposes and led to (now widely accepted in industry), vector 
control. It is, however, to be noted that above base frequency 1b , when the 
full voltage capability of PEC is reached, the value of rotor flux magnitude 
may not be maintained any more as the difference between the stator flux 
(8.145) and rotor flux amplitudes (8.104) is less than 15% in general (lower 
values for higher powers). So, above 1b, the torque/speed curves degenerate 
into the shapes obtained for V1/f1 control. 
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Figure 8.18. Torque/speed curves for constant rotor flux r
b = ct. up to base frequency 

1b; constant voltage and variable frequency above 1b. 

Four-quadrant operation presented in Figure 8.18 is obtainable as with 
V1/f1 control. 

Negative frequency 1 means negative (reverse) m.m.f. wave speed, to 
be obtained by changing the stator phase voltage sequence (from a b c to a c 
b). 

8.19. CONSTANT STATOR FLUX TORQUE/SPEED CURVES HAVE 
TWO BREAKDOWN POINTS 

Let us note from (8.104) that the stator-rotor flux relationship for steady-
state (cage rotor) is 
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Consequently the torque Te from (8.146) becomes 
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This expression has extreme (critical) values for 
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So the peak torque is independent of frequency as long as s amplitude 
may be realized, that is, below base (rated) frequency. 

Above base frequency, according to (8.145), the approximate peak 
torque would be 
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The torque/speed curves are shown in Figure 8.19 for four-quadrant 
operation. 

The peak torque is safely provided even for zero speed. Still the 
departure from linearity in the torque/speed curve has to be dealt with when 
investigating electric drive transients and stability. 

Note: In principle, PECs can also provide constant main (airgap) flux, 
variable frequency control. So far this operation mode has not reached wide 
markets in variable speed drives. 

 

Figure 8.19. Torque/speed curves for constant stator flux amplitude s up to 1b and 

constant voltage above 1b. 

8.20. THE SPLIT-PHASE INDUCTION MOTOR 

The split-phase induction motor is provided with two orthogonal stator 
windings: the main winding and the auxiliary winding. 

This induction motor is, in general, fed from a single phase AC supply of 
constant or variable voltage and frequency. 

So, even for variable speed, it requires, essentially, a single phase PWM 
inverter. 

Connecting a capacitor in series with the auxiliary winding causes the 
current Ia to lead the current in the main winding Im and thus the two 
orthogonal placed windings produce an elliptical magnetic field in the airgap 
which has a traveling component. This explains the safe selfstarting from the 
capacitor auxiliary to the main winding direction of rotation. 

Switching the capacitor from auxiliary to main winding leads to the 
reversal of traveling field component in the airgap and thus the direction of 
motion may be reversed. For this latter case the two windings should be 
identical (same number of turns and slots). For unidirectional motion, a 
higher than unity turns ratio a =Wa/Wm is typical with Ia < Im, as in many 
cases the auxiliary winding is turned off after starting the motor. 

It is also common to use two capacitors: one (larger) for starting, and a 
smaller one for running. 

It goes without saying that the power factor of the capacitor split-phase 
IM is very good, due to the presence of the capacitor. 
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Typical connections for dual capacitors IM are shown in Fig. 8.20. 
 

 

Figure 8.20. The dual capacitor IM: a.) Equivalent scheme, 

b.) Phasor diagrams for zero and rated load. 

The capacitor voltage is rectangular to auxiliary winding current. For 
symmetry conditions – 90° electrical degrees between the Ia and Im and equal 
Ampere turns WmIm = WaIa – a pure traveling field is produced; once at zero 
speed with the capacitor Cs and once at rated speed (load) with capacitor Cn < 
Cs (Cs  / Cn  4 - 6). 

At any other speed (slip S) the magnetic field in the airgap will have an 
additional (undesirable) inverse component which produces a braking torque 
and additional losses. 

As done for the three phase motor, the m.m.f. of stator windings 
fundamental components are: 
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 (8.152) 

The ratio of the two m.m.f. amplitudes is: 
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 (8.153) 

The total m.m.f. F(es, t) may be decomposed in forward and backward 
waves: 
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 (8.154) 

 
With: 
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 b

i
m1

a1

b
f

i
m1

a1

f C

sin
F

F
1

sin;
C

sin
F

F
1

sin







 (8.157) 

It is evident that for F1a/F1m  1 and the phase shift i=900, Cb=0 and thus 
the backward field (and torque) is zero. The slip is S+=(1 - r) / 1 for the 
direct m.m.f. component and S- = 2-S = (-1 - r) / (-1) for the backward 
(inverse) m.m.f. component. 

For the steady state the symmetrical (+ / −) component model is 
straightforward, while for transients the dq model in stator coordinates is 
very practical. 

The + / − model 
 

 

Figure 8.21. The + / − model decomposition; 

The superposition principle is used: 

   aaammm AAA;AAA  (8.158) 

And 
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Now the machine behaves like two separate fictitious machines for the 
two components: 
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 (8.160) 

   aaammm VVV;VVV  (8.161) 
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The + / − impedances Zm represent the total forward/backward 
impedances of the machine on a per phase basis, when the rotor cage is 
reduced to the main (m) and respectively, auxiliary (a) winding (Figure 8.22) 

 

Figure 8.22. Equivalent symmetrical (+ / −) impedance: a.) reduced to main winding; 

b.) reduced to auxiliary winding; 

The relationship of Vm and Va voltages to the source voltage Vs are: 

 saaaams VZ)II(V;VV    (8.162) 

Za is the auxiliary impedance (a capacitor in general) added in series to 
the auxiliary phase for better starting and (or) running. 

The torque Te expression has two terms: the feedforward and feedback 
components: 
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 (8.163) 

When the auxiliary winding is open Za = , Irm+= Irm- and thus, at zero 
speed (S=1) the torque is zero, as expected, and the machine does not start. 

A typical mechanical characteristic Te(r) for a split phase capacitor run 
motor comprises the positive torque (with synchronism at + 1) and the 
negative torque (with synchronism at − 1), Figure 8.23. 

The backward (negative) torque is rather small but present at all speeds, 
less the rated speed, where, by design, symmetry conditions are met. There 
are two symmetrization conditions that stem from Im-=0 which lead to a value 
of turns ratio a and of the capacitance C for given slip S [8, pp. 851]. 
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Figure 8.23. Typical mechanical characteristic of a split phase capacitor-run induction 

motor; 

For the case of motor with same copper quantity in both stator windings 
the symmetrization conditions are very simple [8]: 
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 (8.164) 

So for an existing motor (with fixed turns ratio a), there may not be any 
capacitor to symmetrize the motor at no slip (speed). Fortunately perfect 
symmetrization is not necessary because the backward torque tends to be 
small for reasonably low rotor resistance (good efficiency) designed 
motors.The slip phase capacitor motor is widely used both at constant and 
variable speed for applications below 500W in general. More on the control 
of this motor in Chapter 9. 

 
Example 8.4: 
A capacitor run split-phase IM with Ca = 8F, 2p = 6 pole, 230V, 50 Hz, 

nn = 960 rpm has the following main and auxiliary winding parameters: Rsm = 
34, Rsa = 150, a = 1.73, Xsm = 35.9, Xsa = a2Xsm, Xrm = 29.32, Rrm = 
23.25, Xm = 249. 

For the case of open auxiliary phase calculate: 
a) The  impedances Zm, Zm at rated slip; 
b) The equivalent circuit of the machine for this particular case; 
c) The main winding current components Im+, Im- and the total current Im. 
d) The  torque components, the resultant torque and the mechanical 

power, efficiency and power factor. 
Solution: 
a) The rated slip: 
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From Figure 8.22. the  impedances are: 
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 (8.167) 

Let us notice that because the auxiliary current Ia = 0, from (8.158) – 
(8.159): 
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Combining this with (8.160): 
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which means that we obtain a series equivalent circuit (Fig. A): 

 

Figure A. Single phase (Ia=0) IM equivalent circuit; 

c) The main winding current components Im+=Im- are then simply: 
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The main winding current Im= 2Im+ = 1.392 A. 
The power factor for S = 0.06, cos1 is: 
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d) The torque components in (8.163) are (Fig. A): 
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With Rrm+= 105.4  and Rrm-= 9.6  from Zm+ and Zm- above: 
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So the total torque: 
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The mechanical power Pm is: 
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Neglecting the core and mechanical loss the efficiency is: 
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The power factor cos1 is low, as calculated above because the capacitor 
is missing and the efficiency is low, mainly because the power is small. 

The need to supply the auxiliary winding in series with a capacitor is 
evident. 

Note: Even when the auxiliary phase winding is present, the performance 
computation process is as above, but a bit more tedious [8, pp. 847]. 

8.21. SUMMARY 

 The three-phase induction motor is the workhorse of industry for powers 
from below 1 kW to 10 MW and over 100 MW in wound rotor 
configuration for pumped storage power plants. 

 The AC stator and rotor windings are placed in slots. Skin effect in the 
rotor windings is put to work in constant speed high starting torque 
applications and is to be avoided in variable speed drives where variable 
voltage and frequency are provided by PECs. 
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 The inductances, between stator and rotor windings, vary sinusoidally 
with the rotor position and thus the voltage-current equations in phase 
coordinates are difficult to handle for transients even through numerical 
methods, in an 8th order nonlinear system. 

 The space-phasor model, equivalent to the d-q (orthogonal axis, or 
Park’s) model, is characterized by constant coefficients. 

 For steady-state, the rotor current and flux space-phasors are spatially 
orthogonal to each other. 

 At constant speed the space-phasor model is a second-order system with 
two complex eigenvalues, one for the stator, the other for the rotor. They 
depend on rotor speed and on the reference system speed b, but their 
real part is negative for low slip values. 

 Under steady-state the space-phasor model has the same equations 
irrespective of the reference system speed. 

 Losses in an induction motor are distributed both in the stator and in the 
rotor: winding and core loss in the stator and winding, and additional 
and mechanical losses in the rotor. The equivalent circuit allows for 
calculating the steady-state performance conveniently. 

 The induction motor operation modes are motoring, generating and AC 
braking (plugging). The torque/speed curve shows two peak values (one 
for motoring and the other for generating), where constant voltage and 
frequency fed. 

 When the motor stator is DC current fed and the rotor speed is nonzero, 
motion induced voltages in the rotor produce rotor currents and as a 
consequence a braking torque. Its maximum is obtained at a small speed 
for cage rotor motors, as the rotor current frequency 2 is equal to rotor 
speed r. 

 Speed control methods include variable stator or rotor frequency and 
voltage through PECs. For limited speed control ( 30% around ideal 
no-load speed) the variable rotor frequency supply method (through 
limited power PECs) is particularly suited for the scope, especially in 
high power drives. 

 Stator frequency variation is followed along three methods of practical 
interest: V1/f1 method, constant rotor flux and constant stator flux 
methods. 

 Only for constant rotor flux is the torque/speed curve linear (as for a PM 
DC brush motor) that is, ideal for electric drives control. This method is 
known as vector control. 

 Split-phase capacitor induction motors are used in general below 500 W 
in single phase supply (home) applications. 
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8.22. PROBLEMS 

8.1. Draw the complex root (eigenvalues) locus plot of a cage rotor induction 
motor with data as in example 8.2 for 8 different rotor speed values from 
zero to 2400 rpm, in stator coordinates (b = 0). 

8.2. For the induction motor with resistances and inductances as in example 
8.3, p = 1, Vr

b = 0, n = 900rpm, rotor flux r
b = 1 Wb, torque level Te = 

40 Nm calculate: primary frequency 1, stator flux space-phasor 
amplitude in synchronous coordinates, stator voltage, stator current and 
power factor. Align the d axis along the rotor flux and draw the space-
phasor diagram with the corresponding numbers on it (as in Figure 
8.12). 

8.3. An induction motor has the data ideal no-load (S = 0) phase current 
(rms) Ion = 5 A, p = 2, no-load losses p0 = 200 W, stator phase voltage V 
= 120 V (rms); f1 = 60 Hz; starting current per phase (r = 0, S = 1) Istart 
= 15Ion and starting power factor cos1s = 0.3; Lls = Llr; rstart = 3rr. Using 
the equivalent circuit of Figure 8.11 calculate: the stator and rotor 
resistances rs, rstart and the leakage inductances Lls and Llr, the starting 
torque, core loss resistance rm and core loss piron, and main inductance 
Lm. Observing that we have a deep bar (skin effect) rotor and the rotor 
resistance during normal operation is rr = 1.2rs, calculate all the electrical 
losses in the machine for S = 0.02. 

8.4. For an induction motor with the data: rs = 0.2 , p = 2, rr = 0.2 , Llr = 
Lls = 5x10-3 H, (Lm = 0.1 H), f1 = 60 Hz, VL = 220 V (rms) operating in 
regenerative braking at S = -0.02, calculate electromagnetic torque Te 
and the electric power retrieved if the core and mechanical losses are 
neglected. 

8.5. For the induction motor with the data (resistances and inductances) of 
problem 8.4, calculate the DC braking peak torque (for the DC 
connection of Figure 8.15b at Io = 4 A), for 1 = 210 rad/s. 

8.6. An induction motor works with a rotor flux level r0 = 1 Wb and has 
four poles (2p = 4) and the rotor resistance rr = 0.2 . For 1 = 
220rad/s calculate and draw the torque/speed curve. For r′ = 0.01s, S = 
0.1, Ks = 0.95 determine the stator flux level so and, neglecting the 
stator resistance, the stator voltage Vs0 required. 

8.7. An induction motor works at constant stator flux and variable frequency 
and has the data as in problem 8.6. Determine the critical slip frequency 
and (S1)k and the critical (breakdown) torque for s0 = 1.06 Wb and 
draw the torque/speed curve for f1 = 20 Hz. For f1′ = 60 Hz, calculate the 
maximum flux level available for the same voltage as in the case of 
20Hz, and determine again the breakdown torque available, and the 
corresponding electromagnetic power. 
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